1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya
a
ex5(sinx−cosx)+C
b
e2x5(2sinx−cosx)+C
c
e2x5(2cosx−sinx)+C
d
ex5(2cosx−sinx)+C
answer is B.
(Unlock A.I Detailed Solution for FREE)
Best Courses for You
JEE
NEET
Foundation JEE
Foundation NEET
CBSE
Detailed Solution
Let, ∫e2xsinxdxOn taking sin x as first function and e2x as second function and integrating by parts, we get∫e2xsinxdx=sinx⋅∫e2xdx−∫ddx(sinx)⋅∫e2xdxdx=sinx⋅e2x2−∫cosx⋅e2x2dx=sinx⋅e2x2−12∫e2xcosxdx⇒∫e2xsinxdx=sinx⋅e2x2−12l1------iwhere I1=∫e2xcosxdxOn taking cos x as first function and e2x as second function and integrating by parts, we getI1=cosx⋅∫e2xdx−∫ddx(cosx)⋅∫e2xdxdx=cosx⋅e2x2−∫(−sinx)⋅e2x2dx+C1=e2xcosx2+12∫e2xsinxdx+C1On putting value of I1 in Eq. (i), we get∫e2xsinxdx=e2xsinx2−12e2xcosx2+12∫e2xsinxdx+C1⇒∫e2xsinxdx=e2xsinx2−e2xcosx4−14∫e2xsinxdx−12C1⇒∫e2xsinxdx+14∫e2xsinxdx=e2xsinx2−e2xcosx4−12C1⇒ 54∫e2xsinxdx=e2xsinx2−e2xcosx4−12C1⇒ ∫e2xsinxdx=45e2xsinx2−e2xcosx4−12C1=25e2xsinx−15e2xcosx−25C1=25e2xsinx−15e2xcosx+Cwhere ,C=−25C1Hence , I=e2x5(2sinx−cosx+C)