Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

∫e2xsin⁡xdx is equal to

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

ex5(sin⁡x−cos⁡x)+C

b

e2x5(2sin⁡x−cos⁡x)+C

c

e2x5(2cos⁡x−sin⁡x)+C

d

ex5(2cos⁡x−sin⁡x)+C

answer is B.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Let, ∫e2xsin⁡xdxOn taking sin x as first function and e2x as second function and integrating by parts, we get∫e2xsin⁡xdx=sin⁡x⋅∫e2xdx−∫ddx(sin⁡x)⋅∫e2xdxdx=sin⁡x⋅e2x2−∫cos⁡x⋅e2x2dx=sin⁡x⋅e2x2−12∫e2xcos⁡xdx⇒∫e2xsin⁡xdx=sin⁡x⋅e2x2−12l1------iwhere I1=∫e2xcos⁡xdxOn taking cos x as first function and e2x as second function and integrating by parts, we getI1=cos⁡x⋅∫e2xdx−∫ddx(cos⁡x)⋅∫e2xdxdx=cos⁡x⋅e2x2−∫(−sin⁡x)⋅e2x2dx+C1=e2xcos⁡x2+12∫e2xsin⁡xdx+C1On putting value of I1 in Eq. (i), we get∫e2xsin⁡xdx=e2xsin⁡x2−12e2xcos⁡x2+12∫e2xsin⁡xdx+C1⇒∫e2xsin⁡xdx=e2xsin⁡x2−e2xcos⁡x4−14∫e2xsin⁡xdx−12C1⇒∫e2xsin⁡xdx+14∫e2xsin⁡xdx=e2xsin⁡x2−e2xcos⁡x4−12C1⇒ 54∫e2xsin⁡xdx=e2xsin⁡x2−e2xcos⁡x4−12C1⇒ ∫e2xsin⁡xdx=45e2xsin⁡x2−e2xcos⁡x4−12C1=25e2xsin⁡x−15e2xcos⁡x−25C1=25e2xsin⁡x−15e2xcos⁡x+Cwhere ,C=−25C1Hence , I=e2x5(2sin⁡x−cos⁡x+C)
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring
∫e2xsin⁡xdx is equal to