Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

For1≤i, j≤3,Letaij=∫−π/2π/2cos(ix)cos(jx)dxand let A=[aij]3×3then

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

Ais singular matrix

b

AX=Bhas a unique solution for every 3×3matrix B

c

A is a skew-symmetric matrix

d

A2=I

answer is B.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

For 1≤i≤3,aii=∫-π/2π/2cos2(ix)dx=2∫0π/2cos2(ix)dx=∫0π/2[1+cos(2ix)]dx=x+sin(2ix)2i0π/2=π2+0=π2 For 1≤i,j≤3,i≠jaij=2∫0π/2cos(ix)cos(jx)dx=∫0π/2{cos[(i+j)x]+cos[(i-j)x]}dx=sin[(i+j)x]i+j+sin[(i-j)x]i-j0π/2=sin[(i+j)π/2]i+j+sin[(i-j)π/2]i-j∴a12=-13+1=23=a21a13=0=a31a23=15+1=65=a32 Thus, A=π/22/302/3π/26/506/5π/2|A|=π28-43π72≠0,A-1 exists. ∴ AX=Bhas a unique solution, for every matrix B
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring