Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

∫log⁡(log⁡(log⁡x))xlog⁡xlog⁡(log⁡x)du=f(x)+C then f(x)=

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

12loglogxlogx

b

12loglogx2

c

loglog(logx)2

d

12loglog(logx)2

answer is D.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

I=∫log(log(logx))xlogxlog(logx)dx Let log⁡(log⁡(log⁡x))=tI=1xlog⁡xlog⁡(log⁡x)dx=dtI=∫tdt=t22+C=(log⁡(log⁡(log⁡x)))22+C
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
∫log⁡(log⁡(log⁡x))xlog⁡xlog⁡(log⁡x)du=f(x)+C then f(x)=