Q.

For 0≤r<2n, 2n+rCn 2n−rCn cannot exceed

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

4nCn

b

4nC2n

c

6nC3n

d

none of these.

answer is B.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

For 0≤r<2n,(1+x)4n=(1+x)2n+r(1+x)2n−r=A0+A1x+A2x2+…+A2n+rx2n+rB0+B1x+B2x2+…+B2n−rx2n−r where Ak=2n+rCk(0≤k≤2n+r)and Bk=2n−rCk(0≤k≤2n−r)Coefficient of x2n on the RHSA2nB0+A2n−1B1+…+AnBn+An+1Bn−1+…+ArB2n−r         = coefficient of x2n on LHS=4nC2n.Thus, AnBn<4nC2n ⇒ 2n+rCn 2n−rCn<4nC2n
Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon