Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

∫tan−1⁡xdx is equal to

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

xtan−1⁡x−x+12tan−1⁡x+C

b

xtan−1⁡x+C

c

−x+xtan−1⁡x+C

d

None of these above I1=∫xx+1dx

answer is D.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

I=∫1⋅tan−1⁡xdx=tan−1⁡x⋅x−∫11+x⋅12x⋅xdx=xtan−1⁡x−12∫x1+xdxLet I1=∫xx+1dxAssume that x=t⇒ 12xdx=dt⇒dx=2tdt∴ I1=∫t⋅2t1+t2dt=2∫1+t21+t2−11+t2dt =2t−2tan−1⁡t =2x−2tan−1⁡x∴ I=xtan−1⁡x−122x−2tan−1⁡x+C =xtan−1⁡x−x+tan−1⁡x+C =(x+1)tan−1⁡x−x+C
Watch 3-min video & get full concept clarity

courses

No courses found

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon