Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

∫(1+x)sin ⁡xx2+2xcos2⁡ x−(1+x)sin ⁡2xdx

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

12loge⁡sin⁡x−(x+1)cos⁡x−1sin⁡x−(x+1)cos⁡x+1+C

b

12tan−1⁡{sin⁡x−(x+1)cos⁡x}+C

c

12sin−1⁡{sin⁡x−(x+1)cos⁡x}+C

d

12sin−1⁡(cos⁡x+sin⁡x)+C

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

I=∫(1+x)sin ⁡xdx(x+1)2cos2⁡x−cos2 ⁡x−2(1+x)sin ⁡xcos ⁡xI=(1+x)sin⁡xdx(x+1)2cos2⁡x+sin2 ⁡x−2(1+x)sin ⁡xcos⁡ x−1I=(1+x)sin⁡x(sin⁡x−(x+1)cos⁡x)2−1dx Put  sin⁡x−(x+1)cos⁡x=t⇒sin⁡ x(x+1)dx=dt∴ I=∫dtt2−1=12log ⁡t−1t+1+C=12loge⁡ sin ⁡x−(x+1)cos ⁡x−1sin ⁡x−(x+1)cos ⁡x+1+C
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring