Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

∫1−x2x(1−2x)dx is equal to

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

x+log⁡x−34log⁡|x−1|+C

b

x2+log⁡x+14log⁡|x−1|+C

c

x2+log⁡x−34log⁡|2x−1|+C

d

None of the above

answer is C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Let ∫1−x2x(1−2x)dxHere, degree of numerator is equal to degree of denominator, so divide the numerator by denominator. Thus,1−x2x(1−2x)=x2−12x2−x=12+12x−12x2−xI=∫12dx+∫12x−12x2−xdx⇒I=I1+I2---iwhere  l1=∫12dx and I2=∫12x−12x2−xdxnow,  l1=∫12dx=12x+C1 and I2=∫12x−12x2−xdxLet   12x−12x2−x=Ax+B(2x−1)⇒12x−12x2−x=A(2x−1)+Bxx(2x−1)⇒12x−1=2Ax−A+Bx⇒12x−1=x(2A+B)−AOn comparing the coefficient of x and constant term on both sides, we get2A+B=12-----ii−A=−1⇒A=1----iiiFrom Eq. (iii), 2×1+B=12⇒B=12−2=−32∴I2=∫1x−32(2x−1)dx=∫1xdx−32∫12x−1dx⇒I2=log⁡x−32log⁡|2x−1|2+C2On putting the values of l1 and I2 in Eq. (i), we getI=12x+log⁡x−34log⁡|2x−1|+C C1+C2=C
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring