Q.

The antiderivative of f(x)=log⁡(log⁡x)+(log⁡x)−2 whose graph passes through (e,e) is

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

a

xlog⁡(log⁡x)+(log⁡x)−1

b

x−log⁡(log⁡x)+(log⁡x)−1+e

c

xlog⁡(log⁡x)−(log⁡x)−1+2e

d

none of these

answer is C.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

An antiderivative of f (x) = F(x) =∫log⁡(log⁡x)+(log⁡x)−2dx+C=xlog⁡(log⁡x)−∫xxlog⁡xdx+∫(log⁡x)−2dx+C (integrating by parts the first term) =xlog⁡(log⁡x)−x(log⁡x)−1+∫(log⁡x)−2dx+∫(log⁡x)−2dx+C (again integrating by parts (log⁡x)−1 =xlog⁡(log⁡x)−x(log⁡x)−1+CPutting x=e we have e=0−e+C so C=2eThus F(x)=xlog⁡(log⁡x)−(log⁡x)−1+2e
Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
The antiderivative of f(x)=log⁡(log⁡x)+(log⁡x)−2 whose graph passes through (e,e) is