Q.

For any positive integer n, define  fn:0,∞→ℝ as fnx=∑j=1ntan−111+x+jx+j−1  for all x∈0,∞  (Here, the inverse trigonometric function tan−1x assume values in −π2,π2   Then, which of the following statement(s) is (are) TRUE?

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

∑j=15tan2f10=55

b

∑j=1101+f'10sec2fj0=10

c

limx→∞tanfnx=1n for a fixed number n

d

limx→∞sec2fnx=1 for a fixed number n

answer is D.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

fn(x)=∑j=1ntan-1(x+j)-(x+j-1)1+(x+j)(x+j-1)fn(x)=∑j=1ntan-1(x+j)-tan-1(x+j-1)fn(x)=tan-1(x+n)-tan-1x∴  tanfn(x)=tantan-1(x+n)-tan-1xtanfn(x)=(x+n)-x1+x(x+n)  tanfn(x)=n1+x2+nx∴sec2fn(x)=1+tan2fn(x)limx→∞sec2fn(x)=limx→∞1+n1+x2+nx2=1
Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon