Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

For any positive integer n, define  fn:0,∞→ℝ as fnx=∑j=1ntan−111+x+jx+j−1  for all x∈0,∞  (Here, the inverse trigonometric function tan−1x assume values in −π2,π2   Then, which of the following statement(s) is (are) TRUE?

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

∑j=15tan2f10=55

b

∑j=1101+f'10sec2fj0=10

c

limx→∞tanfnx=1n for a fixed number n

d

limx→∞sec2fnx=1 for a fixed number n

answer is D.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

fn(x)=∑j=1ntan-1(x+j)-(x+j-1)1+(x+j)(x+j-1)fn(x)=∑j=1ntan-1(x+j)-tan-1(x+j-1)fn(x)=tan-1(x+n)-tan-1x∴  tanfn(x)=tantan-1(x+n)-tan-1xtanfn(x)=(x+n)-x1+x(x+n)  tanfn(x)=n1+x2+nx∴sec2fn(x)=1+tan2fn(x)limx→∞sec2fn(x)=limx→∞1+n1+x2+nx2=1
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring