Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

The area of the region (x,y):y2≤4x , 4x2+4y2≤9

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

29π16−98sin−1⁡13+212

b

9π16−98sin−1⁡13+212

c

9π8−94sin−1⁡13+212

d

49π16−98sin−1⁡13+212

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Given inequalities are y2≤4x--------(1) and 4x2+4y2≤9-----------(2) Points satisfying (1) lies interior to parabola y2=4x and those  of (2) lies inside circle 4x2+4y2=9 Solving the curves we get, 4x2+16x=9 or  (2x−1)(2x+9)=0 or x=1/2  (as x=-92 not possible ) Therefore, the points of intersection of both curves are 12,2 and 12,−2 . The graph of these two curves and the common region of the points satisfying both the inequalities is as shown in adjacent figureFrom the figure, required area is given byA=2∫112 2xdx+2∫1232 129−4x2dx Putting 2x=t , dx=dt2in the second integral, we get  ∴ A=2∫012 2xdx+14∫13 (3)2−(t)2dt=2x3232012+14t29−t2+92sin−1⁡t313=2232+140+92sin−1⁡(1)−128+92sin−1⁡13=29π16−98sin−1⁡13+212
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring