Q.

By principle of mathematical induction cos⁡θcos⁡2θcos⁡4θ…cos⁡2n−1θ,∀n∈N=

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

sin⁡2nθ2nsin⁡θ

b

cos⁡2nθ2nsin⁡θ

c

sin⁡2nθ2n−1sin⁡θ

d

None of these

answer is A.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Let P(n):cos⁡θcos⁡2θcos⁡4θ…cos⁡2n−1θ=sin⁡2nθ2nsin⁡θ… (i) Step l :For n=1,          LHS=cos⁡θ and RHS =sin⁡2θ2sin⁡θ=cos⁡θ  P(1 ) is true. Step ll :Let P(n) is true, thenP(k):cos⁡θcos⁡2θcos⁡4θ…cos⁡2k−1θ=sin⁡2kθ2ksin⁡θStep III: For n=k+1P(k+1):cos⁡θcos⁡2θ…cos⁡2kθ=sin⁡2k+1θ2k+1sin⁡θ LHS =cos⁡θcos⁡2θ…cos⁡2(k−1)θcos⁡2kθ=sin⁡2kθ2ksin⁡θ⋅cos⁡2kθ=2sin⁡2kθ⋅cos⁡2kθ2k+1sin⁡θ=sin⁡2k+1θ2k+1sin⁡θ=RHS   For n =k + 1, P(n) is true. Hence, by principle for mathematical induction for all n ∈ N,P(n) is true.
Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
By principle of mathematical induction cos⁡θcos⁡2θcos⁡4θ…cos⁡2n−1θ,∀n∈N=