Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

By principle of mathematical induction cos⁡θcos⁡2θcos⁡4θ…cos⁡2n−1θ,∀n∈N=

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

sin⁡2nθ2nsin⁡θ

b

cos⁡2nθ2nsin⁡θ

c

sin⁡2nθ2n−1sin⁡θ

d

None of these

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Let P(n):cos⁡θcos⁡2θcos⁡4θ…cos⁡2n−1θ=sin⁡2nθ2nsin⁡θ… (i) Step l :For n=1,          LHS=cos⁡θ and RHS =sin⁡2θ2sin⁡θ=cos⁡θ  P(1 ) is true. Step ll :Let P(n) is true, thenP(k):cos⁡θcos⁡2θcos⁡4θ…cos⁡2k−1θ=sin⁡2kθ2ksin⁡θStep III: For n=k+1P(k+1):cos⁡θcos⁡2θ…cos⁡2kθ=sin⁡2k+1θ2k+1sin⁡θ LHS =cos⁡θcos⁡2θ…cos⁡2(k−1)θcos⁡2kθ=sin⁡2kθ2ksin⁡θ⋅cos⁡2kθ=2sin⁡2kθ⋅cos⁡2kθ2k+1sin⁡θ=sin⁡2k+1θ2k+1sin⁡θ=RHS   For n =k + 1, P(n) is true. Hence, by principle for mathematical induction for all n ∈ N,P(n) is true.
Watch 3-min video & get full concept clarity

courses

No courses found

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon