Q.

By principle of mathematical induction cos⁡θcos⁡2θcos⁡4θ…cos⁡2n−1θ,∀n∈N=

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

sin⁡2nθ2nsin⁡θ

b

cos⁡2nθ2nsin⁡θ

c

sin⁡2nθ2n−1sin⁡θ

d

None of these

answer is A.

(Unlock A.I Detailed Solution for FREE)

Detailed Solution

Let P(n):cos⁡θcos⁡2θcos⁡4θ…cos⁡2n−1θ=sin⁡2nθ2nsin⁡θ… (i) Step l :For n=1,          LHS=cos⁡θ and RHS =sin⁡2θ2sin⁡θ=cos⁡θ  P(1 ) is true. Step ll :Let P(n) is true, thenP(k):cos⁡θcos⁡2θcos⁡4θ…cos⁡2k−1θ=sin⁡2kθ2ksin⁡θStep III: For n=k+1P(k+1):cos⁡θcos⁡2θ…cos⁡2kθ=sin⁡2k+1θ2k+1sin⁡θ LHS =cos⁡θcos⁡2θ…cos⁡2(k−1)θcos⁡2kθ=sin⁡2kθ2ksin⁡θ⋅cos⁡2kθ=2sin⁡2kθ⋅cos⁡2kθ2k+1sin⁡θ=sin⁡2k+1θ2k+1sin⁡θ=RHS   For n =k + 1, P(n) is true. Hence, by principle for mathematical induction for all n ∈ N,P(n) is true.
Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon