Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

The circle C1:x2+y2=3 with centre at O, intersects the parabola x2=2y at the point   P in the first quadrant. Let the tangent to the circle C1 at P touches other two circles C2 and C3 at R2 and R3 respectively. Suppose C2 and C3 have equal radii 23 and  centers Q2 and Q3 respectively. If Q2 and Q3 lie on the y-axis, then

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

Q2Q3=12

b

R2R3=46

c

Area of the triangle OR2R3 is 62

d

Area of the triangle PQ2Q2 is 42

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

x2+y2=3,and x2=2y  intersect at  p(2,1) which lies in the first quadrant Equation of tangent at P to the above circle is 2x+y=3 Any circle with center on y-axis, radius 23 is x2+(y-f)2=12The line 2x+y=3 touches the above circle|0+f-3|3=23⇒f-3=±6f=9,-3The equations of C2,C3 are as below x2+y-92=12, and x2+y+32=12Q1(0,9)  Q20,−3⇒Q2Q3=12△PQ2Q3=1292+32=12122=62R1h1k is point of contact, it is foot of the perpendicular of center on the tangenth−02=k−91=−63=−2R1−22,7R2h,k is point of contact, it is foot of the perpendicular of center on the tangenth−02=k+31=2R222,−1  R2R3=46 Area ΔOR2R3 is 62
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring