Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

A common tangent to the conics x2=6y and 2x2−4y2=9 is

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

x+y=1

b

x−y=1

c

x+y=92

d

x−y=32

answer is D.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Let y=(mx+c) is tangent to x2=6ysolve the above equations ⇒x2=6(mx+c) So, x2−6mx−6c=0 Put D=b2−4ac=0⇒c=−32m2∴ we get y=mx−32m2…….(1) And given hyperbola equation is 2x2−4y2=9⇒x292−y294=1….(2) Since, equation (1) is a tangent of equation (2) then c2=a2m2−b2⇒94m4=92m2−94⇒m4=2m2−1⇒m4−2m2+1=0⇒m2−12=0⇒m=±1 for m=1 , equation of tangent is x−y=32Therefore, the correct answer is (D).
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring