Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Consider a branch of the hyperbola x2−2y2−22x−42y−6=0 with vertex at the point A . Let B be one of  the endpoints of its latus rectum. If C is the focus of the hyperbola nearest to the point A, then the area of triangle ABC is

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

1−2/3

b

3/2−1

c

1+2/3

d

3/2+1

answer is B.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

x2−2y2−22x−42y−6=0 or  x2−22+2−2y2+22y+2=4 or  (x−2)24−(y+2)22=1Now B is one of the end points of its latus rectum and C is the focus of the hyperbola nearest to the vertex A. Clearly, area of LABC does not change if we consider similar hyperbola with center at (0,0) or hyperbola x24−y22=1 Here vertex is A(2,0) . ∴ a2e2=a2+b2=6 So, one of the foci is B(6,0) , point C is ae,b2/a or (6,1) . ∴ AB=6−2 and BC=1∴  Area of ΔABC=12AB×BC=12(6−2)×1                                   =32−1 sq.units.
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring