Q.

Consider the cubic equation x3−(1+cos⁡θ+sin⁡θ)x2+(cos⁡θsin⁡θ+cos⁡θ+sin⁡θ)x−sin⁡θcos⁡θ=0whose roots are x1,x2, and x3.The value of x12+x22+x32equalsThe number of values of θ in [0,2π]for which at least two roots are equalThe greatest possible difference between two of the roots if θ∈[0,2π]is

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

a

1

b

2

c

2cos⁡θ

d

sin⁡ θ(sin ⁡θ+cos⁡θ)

e

3

f

4

g

5

h

6

i

2

j

1

k

2

l

22

answer is , , .

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

x3−(1+cos⁡θ+sin⁡θ)x2+(cos⁡θsin⁡θ+cos⁡θ+sin⁡θ)x−sin⁡θcos⁡θ=0Given cubic function isf(x)=(x−1)(x−cos ⁡θ)(x−sin ⁡θ)Therefore, roots are 1,sin⁡ θ, and cos⁡ θ. Hence, x12+x22+x32=1+sin2⁡ θ+cos2⁡ θ=2. Now if 1=sin⁡θ, we get θ=π/2If 1=cos⁡θ, then θ=0,2π and sin⁡θ=cos⁡θ, we get tan⁡θ=1.Therefore, θ=π4,5π4Therefore, the number of values of θ in [0,2π] is 5.Again the maximum possible difference between the two roots is 2. or  1−sin⁡θ=2, when θ=3π/21−cos⁡θ=2, when θ=π
Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon