Q.

Consider the equation 2+x2+4x+3=m,m∈RSet of all real values of m so that the given equation have three solutions isSet of all real values of m so that given equation have four distinct solutions, isSet of all real values of m so that the given equation have two solutions is

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

{3}

b

{2}

c

{1}

d

{0}

e

(0, 1)

f

(1, 2)

g

(1, 3)

h

(2, 3)

i

(3,∞)

j

(2,∞)

k

{2}∪(3,∞)

l

None of these

answer is , , .

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Given equation is 2+x2+4x+3=m∴ x2+4x+3=m−2Given equation is meaningful if m≥2 .                          (1)∴     x2+4x+3=±(m−2)∴     x2+4x+5−m=0 and x2+4x+1+m=0∴     x=−4±16−4(5−m)2 and         x=−4±16−4(1+m)2 ∴ x=−2±m−1 and x=−2±3−mFor four distinct solutions m−1≥0 and 3−m≥0∴ m∈(2,3)                           [ using (1)]For two solutions  m−1≥0 and 3−m≤0⇒m≥3or    m−1≤0 and 3−m≥0⇒m=2 [using(1)] ∴ m∈{2}∪(3,∞)From three solutions, exactly one equation must give equal roots.∴    m=1 and 3−m≥0⇒ no values of m( as m≥2) or     m=3 and m≥1⇒m=3Alternate method:Let us draw the graph of f(x)=x2+4x+3Now equation is l(x + 1) (x + 3)l = m - 2From the graph(1) for three solutions m−2=1⇒m=3(2)for four solutions01⇒ m=2 or m>3 Given equation is 2+x2+4x+3=m∴ x2+4x+3=m−2Given equation is meaningful if m≥2 .                          (1)∴     x2+4x+3=±(m−2)∴     x2+4x+5−m=0 and x2+4x+1+m=0∴     x=−4±16−4(5−m)2 and         x=−4±16−4(1+m)2 ∴ x=−2±m−1 and x=−2±3−mFor four distinct solutions m−1≥0 and 3−m≥0∴ m∈(2,3)                           [ using (1)]For two solutions  m−1≥0 and 3−m≤0⇒m≥3or    m−1≤0 and 3−m≥0⇒m=2 [using(1)] ∴ m∈{2}∪(3,∞)From three solutions, exactly one equation must give equal roots.∴    m=1 and 3−m≥0⇒ no values of m( as m≥2) or     m=3 and m≥1⇒m=3Alternate method:Let us draw the graph of f(x)=x2+4x+3Now equation is l(x + 1) (x + 3)l = m - 2From the graph(1) for three solutions m−2=1⇒m=3(2)for four solutions01⇒ m=2 or m>3 Given equation is 2+x2+4x+3=m∴ x2+4x+3=m−2Given equation is meaningful if m≥2 .                          (1)∴     x2+4x+3=±(m−2)∴     x2+4x+5−m=0 and x2+4x+1+m=0∴     x=−4±16−4(5−m)2 and         x=−4±16−4(1+m)2 ∴ x=−2±m−1 and x=−2±3−mFor four distinct solutions m−1≥0 and 3−m≥0∴ m∈(2,3)                           [ using (1)]For two solutions  m−1≥0 and 3−m≤0⇒m≥3or    m−1≤0 and 3−m≥0⇒m=2 [using(1)] ∴ m∈{2}∪(3,∞)From three solutions, exactly one equation must give equal roots.∴    m=1 and 3−m≥0⇒ no values of m( as m≥2) or     m=3 and m≥1⇒m=3Alternate method:Let us draw the graph of f(x)=x2+4x+3Now equation is l(x + 1) (x + 3)l = m - 2From the graph(1) for three solutions m−2=1⇒m=3(2)for four solutions01⇒ m=2 or m>3
Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
Consider the equation 2+x2+4x+3=m,m∈RSet of all real values of m so that the given equation have three solutions isSet of all real values of m so that given equation have four distinct solutions, isSet of all real values of m so that the given equation have two solutions is