Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Consider the planes P1:2x+y+z+4=0,P2:y−z+4=0 and P3:3x+2y+z+8=0. Let L1L2,L3 be the lines of intersection of the planes P2 and P3,P3 and P1, and P1 and P2respectively.then

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

Atleast two of the lines L1,L2 and L3 are non-parallel

b

Atleast two of the lines L1,L2 and L3 are parallel

c

The three planes intersect in a line

d

The three planes form a triangular prism

answer is B.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Observe that the lines L1,L2&L3 are parallel  to the vector i^−j^−k^ Also, Δ=0=Δ1&b1c2≠b1c1 Hence the three planes intersect in a line. P1=2x+y+z+4=0P2=0x+y−z+4=0P3=3x+2y+z+8=0P2 and P3 gives line L1  Vector parallel to line L1i^j^k^01−1321=3i^−3j^−3k^=3[i^−j^−k^]Similarly  Vector parallel to L2,P3 and P1=i^    j^    k^2    1    13    2    1 =−2i^+2j^+k^=−2(i^−j^−k^) =−i^+j^+k^=−i^−j^−k^Similarly  Vector parallel to L3,P1 and P2=i^j^k^21101−1=−2i^−−2j^+2k^We can see all the lines are parallel to vector(i^−j^−k^) Also 2x+y+z=−40x+y−z=−43x+2y+z=−8Δ=21101−1321⇒2(1+2)−1(0+3)+1(0−3)Δ2=2−410−4−13−81=0=−421101−1321=0Δ3=0So all planes intersection in line L.
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring