Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Consider three planes 2x+py+6z=8, x + 2y + qz = 5 and x + y + 3z = 4Three planes intersect at a point ifthree planes do not have any common point of intersection if

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

p=2,q≠3

b

p≠2,q≠3

c

p≠2,q=3

d

p=2,q=3

e

p=2,q≠3

f

p≠2,q≠3

g

p≠2,q=3

h

p=2,q=3

i

p=2,q∈3

j

p∈2,q∈3

k

p≠2,q=3

l

p=2,q=3

answer is , , .

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

The given system of equations is 2x+py+6z=8x+2y+qz=5x+y+3z=4Δ=2p612q113=(2−p)(3−q) By Cramer's rule, if Δ≠0, i.e., p≠2 and q≠3, the  system has a unique solution.  If p=2 or q=3,Δ=0, then if Δx=Δv=Δz=0, the system has infinite solutions and if any one of Δx,Δy and Δz≠0  the system has no solutionnow,Δx=8p652q413=30−8q−15p+4pq=(4q−15)⋅(p−2)=28615q143=−8q+8q=0Δy=2p8125114=p−2Thus, if p=2,Δx=Δy=Δz=0  for all q∈R  the system has infinite solutions. if p≠2,q=3 and Δz≠0  then the system has no solution. Hence the system has (i) no solution if p≠2  and q = 3,(ii) a unique solution if p≠2 and q≠2 and (iii) infinite solutions if p =  2 and q∈RThe given system of equations is 2x+py+6z=8x+2y+qz=5x+y+3z=4Δ=2p612q113=(2−p)(3−q) By Cramer's rule, if Δ≠0, i.e., p≠2 and q≠3, the  system has a unique solution.  If p=2 or q=3,Δ=0, then if Δx=Δv=Δz=0, the system has infinite solutions and if any one of Δx,Δy and Δz≠0  the system has no solutionnow,Δx=8p652q413=30−8q−15p+4pq=(4q−15)⋅(p−2)=28615q143=−8q+8q=0Δy=2p8125114=p−2Thus, if p=2,Δx=Δy=Δz=0  for all q∈R  the system has infinite solutions. if p≠2,q=3 and Δz≠0  then the system has no solution. Hence the system has (i) no solution if p≠2  and q = 3,(ii) a unique solution if p≠2 and q≠2 and (iii) infinite solutions if p =  2 and q∈RThe given system of equations is 2x+py+6z=8x+2y+qz=5x+y+3z=4Δ=2p612q113=(2−p)(3−q) By Cramer's rule, if Δ≠0, i.e., p≠2 and q≠3, the  system has a unique solution.  If p=2 or q=3,Δ=0, then if Δx=Δv=Δz=0, the system has infinite solutions and if any one of Δx,Δy and Δz≠0  the system has no solutionnow,Δx=8p652q413=30−8q−15p+4pq=(4q−15)⋅(p−2)=28615q143=−8q+8q=0Δy=2p8125114=p−2Thus, if p=2,Δx=Δy=Δz=0  for all q∈R  the system has infinite solutions. if p≠2,q=3 and Δz≠0  then the system has no solution. Hence the system has (i) no solution if p≠2  and q = 3,(ii) a unique solution if p≠2 and q≠2 and (iii) infinite solutions if p =  2 and q∈R
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring