Q.
Consider three points P≡(−sin(β−α),−cosβ),Q≡(cos(β−α),sinβ), and R≡(cos(β−α+θ),sin(β−θ)), where 0<α,β,θ<π4. Then
see full answer
Want to Fund your own JEE / NEET / Foundation preparation ??
Take the SCORE scholarship exam from home and compete for scholarships worth ₹1 crore!*
An Intiative by Sri Chaitanya
a
P lies on the line segment RQ
b
Q lies on the line segment PR
c
R lies on the line segment QP
d
P,R,R are non -collinear
answer is D.
(Unlock A.I Detailed Solution for FREE)
Ready to Test Your Skills?
Check your Performance Today with our Free Mock Test used by Toppers!
Take Free Test
Detailed Solution
P≡(−sin(β−α),−cosβ)≡(x1,y1)Q≡(cos(β−α),sinβ)≡(x2,y2)R≡(cos(β−α+θ),sin(β−θ))or R≡(x2cosθ+x1sinθ,y2cosθ+y1sinθ)If T≡(x2cosθ+x1sinθcosθ+sinθ,y2cosθ+y1sinθcosθ+sinθ), for some 'θ' then P,Q and T are collinear. ∴ P,Q,R are collinear if cosθ+sinθ=1, which is not possible as 0<θ<π4.Hence, P,Q,R are non-collinear.
Watch 3-min video & get full concept clarity