Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

The equation of a circle which cuts the three circles x2+y2−3x−6y+14=0,x2+y2−x−4y+8=0x2+y2+2x−6y+9=0 orthogonally, is

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

x2+y2−2x−4y+1=0

b

x2+y2+2x+4y+1=0

c

x2+y2−2x+4y+1=0

d

x2+y2−2x−4y−1=0

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

The circle having centre at the radical centre of three given circles and radius equal to the length of the tangent from it to any one of three circles cuts all the three circles orthogonally. The given circles are x2+y2−3x−6y+14=0           …(i)x2+y2−x−4y+8=0              …(ii)x2+y2+2x−6y+9=0          …(iii)The radical axes of (i), (ii) and (ii), (iii) are respectively x+y−3=0                 …(iv)and, 3x−2y+1=0           …(v)Solving (iv) and (v), we get x=1,y=2Thus, the coordinates of the radical centre are (1, 2). The length of the tangent from (1, 2) to circle (i) is given by r=1+4−3−12+14=2Hence, the required circle is (x−1)2+(y−2)2=22⇒x2+y2−2x−4y+1=0
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon