Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

The equation of the ellipse whose axes are coincident with the coordinates axes and which touches the straight lines3x−2y−20=0 and x+6y−20=0 is

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

x240+y210=1

b

x25+y28=1

c

x210+y240=1

d

x240+y230=1

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Let the equation of the ellipse bex2a2+y2b2=1We know that the general equation of the tangent to the ellipse isy=mx±a2m2+b2----(i) Since 3x−2y−20=0 or y=32x−10 is tangent to the ellipse, comparing with (i),  m=32 and a2m2+b2=100 or  a2×94+b2=100 or  9a2+4b2=400-----(ii) Similarly, since x+6y−20=0 , i.e., y=−16x+103 is tangent to the ellipse, comparing with (i),  m=16 and a2m2+b2=1009 or  a236+b2=1009 or  a2+36b2=400-----(iii) Solving (ii) and (iii), we get a2=40 and b2=10 .  Therefore, the required equation of the ellipse is x240+y210=1
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring