Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

The equation of the sides of an Isosceles right angled triangle whose hypotenuse is  7x+y−8=0 and opposite vertex to the hypotenuse is 1,1  are

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

3x+4y−7=0,4x−3y−1=0

b

3x−4y−7=0,4x+3y−1=0

c

3x−4y+7=0,4x+3y=1

d

3x−4y−8=0,4x+3y−2=0

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

The equation of any line which makes an angle α with the line ax+by+c=0 and passing  through the point x1,y1 can be taken as y−y1=tan⁡(θ±α)x−x1, here θ is the  inclination of the line ax+by+c=0 The slope of the line ax+by+c=0 is m=−ab=tan⁡θ Since the hypotenuse of right angled isosceles triangle is 7x+y−8=0 and opposite vertex is  (1,1) then the other two sides makes equal angles 45∘ each with the hypotenuse and passing  through the point (1,1) Hence, tan⁡θ=−7,α=45∘ Therefore, the equation of one side is y−1=tanθ+45°x−1=1+tanθ1−tanθx−1=−34x−1It implies, 4y−4=−3x+33x+4y−7=0And the equation of the other side is y−1=tanθ−45°x−1=tanθ−1tanθ+1x−1=43x−1It implies, 3y−3=4x−44x−3y−1=0 Therefore, two sides of given triangle are 3x+4y−7=0,4x−3y−1=0
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring