The equation xx+12+xx−12=a(a−1) has
four real roots if a > 2
four real roots if a < - 1
two real roots if 1 < a < 2
no real root if a < - 1
xx+12+xx−12=a(a−1) or xx+1+xx−12−2xx+1xx−1=a(a−1) or 2x2x2−12−2x2x2−1−a(a−1)=0 or t2−t−a(a−1)=0 where t=2x2x2−1⇒ t=a or 1−a⇒ 2x2x2−1=a or 2x2x2−1=1−a⇒ x=±aa−2 or x=±a−1a+1
When a<−1⇒all roots are real
1<a<2⇒x=±a2−ai,±a−1a+1
⇒ two real roots
When a>2⇒all roots are real