Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

The equation 16x2−3y2−32x+12y−44=0 represents a hyperbola

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

the length of whose transverse axis is 43

b

the length of whose conjugate axis is 4

c

whose center is (−1,2)

d

whose eccentricity is 19/3

answer is C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Let the equation of any normal be y=−tx+2t+t3.  Since it passes through the point (15,12), we have  12=−15t+2t+t3 or t3−13t−12=0 One root is −1. Then, (t+1)t2+t−12=0 or  t=1,3,4 Therefore, the co-normal points are (1,−2),(9,−6), and (16,8).  Therefore, the centroid is (26/3,0).
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring