Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

The equation 16x2−3y2−32x+12y−44=0 represents a hyperbola

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

the length of whose transverse axis is 43

b

the length of whose conjugate axis is 4

c

whose center is (−1,2)

d

whose eccentricity is 19/3

answer is C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Let the equation of any normal be y=−tx+2t+t3.  Since it passes through the point (15,12), we have  12=−15t+2t+t3 or t3−13t−12=0 One root is −1. Then, (t+1)t2+t−12=0 or  t=1,3,4 Therefore, the co-normal points are (1,−2),(9,−6), and (16,8).  Therefore, the centroid is (26/3,0).
Watch 3-min video & get full concept clarity

courses

No courses found

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon