Q.
Evaluatelimn→∞{12tanx2+122tanx22+....+12ntanx2n}
see full answer
Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!
Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya
a
xtanx2
b
1xcotx2
c
x−cotx2
d
1x−cot x
answer is D.
(Unlock A.I Detailed Solution for FREE)
Ready to Test Your Skills?
Check your Performance Today with our Free Mock Test used by Toppers!
Take Free Test
Detailed Solution
limn→∞{12tanx2+122tanx22+....+12ntanx2n} = limn→∞{−cot x+(cotx+12tanx2+122tanx22+....+12ntan x2n)}limn→∞{−cot x+(12cotx2+122tanx22)+....+12ntan x2n} (∵cot x+12tanx2=12cotx2) Proceeding like this we get =limn→∞{−cotx+12ncotx2n} =−cotx+limn→∞(x/2ntanx2n.1x)=−cotx+1x
Watch 3-min video & get full concept clarity