1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya
a
xtanx2
b
1xcotx2
c
x−cotx2
d
1x−cot x
answer is D.
(Unlock A.I Detailed Solution for FREE)
Best Courses for You
JEE
NEET
Foundation JEE
Foundation NEET
CBSE
Detailed Solution
limn→∞{12tanx2+122tanx22+....+12ntanx2n} = limn→∞{−cot x+(cotx+12tanx2+122tanx22+....+12ntan x2n)}limn→∞{−cot x+(12cotx2+122tanx22)+....+12ntan x2n} (∵cot x+12tanx2=12cotx2) Proceeding like this we get =limn→∞{−cotx+12ncotx2n} =−cotx+limn→∞(x/2ntanx2n.1x)=−cotx+1x