Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Evaluate ∫13+sin⁡2xdx

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

122tan−1⁡3tan x+122+C

b

122tan−1⁡tan x+122+C

c

162tan−1⁡3tan x+122+C

d

12tan−1⁡3tan x+122+C

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

I=∫13+sin⁡2xdx=∫13sin2⁡x+cos2⁡x+2sin⁡xcos⁡xdx=∫sec2⁡x3tan2⁡x+2tan⁡x+3dx[Dividing Nr and Dr by cos2 x]                Putting tan x = t and sec2 x dx = dt, we get I=∫dt3t2+2t+3=13∫dtt2+23t+1=13∫dtt+132+2232I=131223tan−1⁡t+13223+C=122tan−1⁡3t+122+C=122tan−1⁡3tan x+122+C
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring
Evaluate ∫13+sin⁡2xdx