1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya
a
tanθ−2tanθ+1tanθ+2tanθ+1
b
tanθ−2tanθ+1tanθ+2tanθ+1
c
tanθ+2tanθ+1tanθ-2tanθ+1
d
None of these
answer is A.
(Unlock A.I Detailed Solution for FREE)
Best Courses for You
JEE
NEET
Foundation JEE
Foundation NEET
CBSE
Detailed Solution
Let I=∫tanθdθ Let tanθ=x2 . Then, d(tanθ)=dx2 or sec2θdθ=2xdx or dθ=2x⋅dxsec2θ=2xdx1+tan2θ=2xdx1+x4I=∫x2×2xdx1+x4=∫2x2x4+1dx=∫2x2+1/x2dx=∫1+1/x2+1−1/x2x2+1/x2dx=∫1+1/x2x2+1/x2dx+∫1−1/x2x2+1/x2dx=∫1+1/x2(x−1/x)2+2dx+∫1−1/x2(x+1/x)2−2dxputting x−1x=u in the first integral and x+1x=v in the second integral we getI=∫duu2+(2)2+∫dvv2−(2)2=12tan−1u2+122logv−2v+2+C=12tan−1x−1/x2+122logx+1/x−2x+1/x+2+C=12tan−1x2−1x2+122logx2−x2+1x2+x2+1+C=12tan−1tanθ−12tanθ=12tan−1tanθ−12tanθ+122logtanθ−2tanθ+1tanθ+2tanθ+1+C