Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Evaluate ∫0π xlog⁡sin⁡xdx

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

12π2log⁡(1/2)

b

2π2log⁡(1/2)

c

π2log⁡(1/2)

d

π2log⁡(2)

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Let I=∫0π xlog⁡sin⁡xdx--------(1)I=∫0π (π−x)log⁡sin⁡(π−x)dx=∫0π (π−x)log⁡sin⁡xdx---------(2) Adding equations (1) and (2), we get 2I=π∫0π log⁡sin⁡xdx or  2I=2π∫0π/2 log⁡sin⁡xdx I=π∫0π/2 log⁡sin⁡xdx ----(3) I=π∫0π/2 log⁡sin(π2-⁡x)dx  =π∫0π/2 log⁡cos⁡xdx ----(4)(3) + (4)2I=π∫0π/2 log⁡sin⁡x+logcosxdx    (take logsinxcosx=log2sinxcosx2)=π∫0π/2 log⁡sin⁡2xdx-π∫0π/2 log⁡2dxput 2x=t,  dx=dt2  UL=π, LL=02I=π2∫0π log⁡sin⁡tdt-πlog2π22I=π∫0π2 log⁡sin⁡tdt-π22log22I=I-π22log2I=-π22log2=π22log⁡(1/2)
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring