Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Evaluate ∫−ππ xsin⁡xdxex+1

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

π

b

c

d

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Let I=∫−ππ xsin⁡xdxex+1-----(1) Using property IV, we replace x by 0−x or −x∴ I=∫−ππ (−x)sin⁡(−x)dxe−x+1=∫−ππ exxsin⁡xdxex+1-----(2)  Adding equations (1) and (2), we get  2I=∫−ππ ex+1  xsin⁡xdxex+1  2I=∫−ππxsinx dx=2∫0π xsin⁡xdx I=∫0π xsin⁡xdx I=∫0π (π−x)sin⁡(π−x)dx  I=∫0π πsin⁡xdx−I  2I=π-cosx0π 2I=2π
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring