Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

In the expansion of (x4−1x3)15 , the coefficient of x39  is

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

1365

b

−1365

c

455

d

−455

answer is D.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Given expansion  (x4−1x3)15 is, We have general term in the expansion (x+a)n(∴  Tr+1= nCr xn−r (a)r be the expansion of (x+a)n) Tr+1= 15Cr(x4)15−r(−1x3)rTr+1= 15Cr (x4)15−r (−1)r (x−3)r  Tr+1= 15Cr x60−4r−3r(−1)rTr+1= 15Cr x60−7r(−1)r.........................(1)x60−7r compare with x39  because of finding r⇒x60−7r=x39This will contain x39  if 60−7r=39∵r=3 this value substitute in Eqn (1)T3+1= 15C3 x60−7×3(−1)3T4= −15C3 x39T4= −15×14×133×2×1  x39∴   T3+1  i.e. T4  is the term containing x39∴  Required coefficient  =  (−1)3  15C3      =−15×14×131×2×3=−455
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring
In the expansion of (x4−1x3)15 , the coefficient of x39  is