f(x)=x2−2ax+a(a+1), f : [a,∞)→[a,∞). If one of the solutions of the equation f(x)=f−1(x) is 5049, then the other may be
see full answer
High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET
🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya
a
5051
b
5048
c
5052
d
5050
answer is B.
(Unlock A.I Detailed Solution for FREE)
Best Courses for You
JEE
NEET
Foundation JEE
Foundation NEET
CBSE
Detailed Solution
f(x)=x2−2ax+a(a+1)f(x)=(x−a)2+a,x∈[a,∞)Let y=(x−a)2+a. Clearly, y≥a. Thus,(x−a)2=y−aor x=a+y−a∴ f−1(x)=a+x−aNow, f(x)=f−1(x)or (x−a)2+a=a+x−a (x−a)2=x−aor (x−a)4=(x−a) i.e., x=a or (x−a)3=1 i.e., x=a or a+1 If a=5049, then a+1=5050 If a+1=5049, then a=5048