Q.

The focal chord of the parabola (y−2)2=16(x−1) is a tangent to the circle x2+y2−14x−4y+51=0, then slope of the focal chord can be

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

0

b

1

c

2

d

3

answer is B.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Given parabola is (y−2)2=16(x−1) Here vertex =(h,k)=(1,2)4a=16⇒a=4 Focus =(h+a,k)=(1+4,2)=(5,2) The equation of focal chord is y−2=mx−5⇒mx−y+2−5m=0………...(1) Given circle equation is x2+y2−14x−4y+51=0………...(2) Hence centre (7,2) And radius, r=49+4−51=2Since equation (1) is a tangent of circle equation (2) thenr = d2=|7m−2+2−5m|m2+1(∵d= perpendiculardistance from centre to equation (1))⇒2m2+1=|2m| Squaring on both sides ⇒2m2=m2+1⇒m=±1∴ Slope of focal chord is 1
Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon