Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

From a point P representing complex number z1 on the curve (|z|=2) two tangents are drawn form P to the curve |z|=1 meets at Az2 and Bz3 then

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

centroid of ΔABP will be on curve |z|=1

b

arg⁡z2z3=±2π3

c

4z1¯+1z2¯+1z3¯4z1+1z2+1z3=9

d

orthocenter and circumcentre of ΔABP will coincide.

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

OA=OB=1; OP=2sin⁡∠OPA=12 ∠OPA=π6 ∠APB=π3OM⊥AB so △APB is equilateral. so (D) is true. OM=1/2;MN=1/2 PN=1 so  centroid lies on |z|=1----Az1+z2+z33=1z1+z2+z32=9z1+z2+z3z1¯+z2¯+z3¯=9Since z1z1¯=4, z2z2¯=1 and z3z3¯=1 ⇒ 4z1¯+1z2¯+1z3¯4z1+1z2+1z3=9----B∠AOB=π−π3=2π3---C
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon