Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

The function f__ satisfying f(b)−f(a)b−a≠f′(x) for any x∈(a,b) is

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

f(x)  =  x1/3,  a=  −1,  b=  1

b

fx  =  2      x=1x2    1

c

f(x)  =  xx;    a =  −1,   b=1

d

f(x)  =  1/x;  a =  1,   b=4

answer is B.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

The functions in (a) , (c) (d) satisfying hypothesis of  Lagrange’s Mean Value theorem so there is  c  ∈  (a, b)  such  that f(b)−f(a)b−a=f′(c). The function in (b) is  differentiable on (1,_2) but not continuous at x=1 and x= 2 as limx→1+ f(x)=limx→1+ x2=1≠f(1) and limx→2− f(x)=limx→2− x2=4≠f(2). Moreover, f(2)−f(1)2−1=−1 and f′(x)=2x>0 On (1,2) so there is no x∈(1,2) such that f(2)−f(1)2−1=f′(x)
Watch 3-min video & get full concept clarity

courses

No courses found

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon