Q.

The function f__ satisfying f(b)−f(a)b−a≠f′(x) for any x∈(a,b) is

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

a

f(x)  =  x1/3,  a=  −1,  b=  1

b

fx  =  2      x=1x2    1

c

f(x)  =  xx;    a =  −1,   b=1

d

f(x)  =  1/x;  a =  1,   b=4

answer is B.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

The functions in (a) , (c) (d) satisfying hypothesis of  Lagrange’s Mean Value theorem so there is  c  ∈  (a, b)  such  that f(b)−f(a)b−a=f′(c). The function in (b) is  differentiable on (1,_2) but not continuous at x=1 and x= 2 as limx→1+ f(x)=limx→1+ x2=1≠f(1) and limx→2− f(x)=limx→2− x2=4≠f(2). Moreover, f(2)−f(1)2−1=−1 and f′(x)=2x>0 On (1,2) so there is no x∈(1,2) such that f(2)−f(1)2−1=f′(x)
Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon