Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

The function y=f(x) is the solution of the differential equation dydx+xyx2−1=x4+2x1−x2 in x∈(−1,1) satisfying f(0)=0 the ∫−323/2 f(x)dx is

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

π3-32

b

π3-34

c

π6-34

d

π6-32

answer is B.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

I.F.= e∫xx2−1dx=e12log⁡x2−1∣=1−x2 Solution of D.E is y1−x2=∫x4+2x1−x2⋅1−x2dy=x55+x2+cf(0)=0⇒c=0y1−x2=x55+x2∫−3232 y dx=∫−3232 x21−x2dx     If f(-x)=f(x) then ∫-aaf(x) dx=2∫0af(x) dx=2∫032 x21−x2dx, put x=sin⁡θ  ⇒dx=cosθ dθ =2∫0π/3 sin2⁡θ dθ=2∫1-cos2θ2dθ=θ-sin2θ20π3=π3-34
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring
The function y=f(x) is the solution of the differential equation dydx+xyx2−1=x4+2x1−x2 in x∈(−1,1) satisfying f(0)=0 the ∫−323/2 f(x)dx is