Q.

The general solution of the differential equation y2+e2xdy−y3dx=0, (c being the constant  of integration), is

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

y2e−x+2lny=c

b

y2e−2x−2lny=c

c

y2e−2x+2lny=c

d

y2e−x−2lny=c

answer is C.

(Unlock A.I Detailed Solution for FREE)

Detailed Solution

We have dxdy=y2+e2xy3⇒dxdy=1y+e2xy3⇒e−2xdxdy−e−2x1y=1y3→1Let −e−2x2=u→2⇒e2xdxdy=dudy→3Substituting 2,3 in 1, we getdudy+2yu=1y3whose solution is u.y2=∫1ydy+k⇒uy2=ln⁡y+k⇒−e−2x2y2=ln⁡y+k   ∵u=−e−2x2⇒−e−2xy2=2ln⁡y+2k∴e−2xy2+2ln⁡y=c where c is an arbitrary constant
Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon