Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Given α→=3i^+j^+2k^ and β→=i^−2j^−4k^ are the  position vectors of the points A and B. Then the distance   of the point −i^+j^+k^ from the plane passing through B and perpendicular to AB is

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

5

b

10

c

15

d

20

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

AB→=β→−α→=−2i^−3j^−6k^Equation of the plane passing through B and perpendicular to AB is  (r→−OB→)⋅AB→=0r→⋅(2i^+3j^+6k^)+28=0Hence, the required distance from r→=−i^+j^+k^=(−i^+j^+k^)⋅(2i^+3j^+6k^)+28|2i^+3j^+6k^|=−2+3+6+287=5 units
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring
Given α→=3i^+j^+2k^ and β→=i^−2j^−4k^ are the  position vectors of the points A and B. Then the distance   of the point −i^+j^+k^ from the plane passing through B and perpendicular to AB is