Given a parallelogram ABCD . If |AB∣→=a,|AD→∣=b and |AC→|=c, then DB→⋅AB→ has the value :
see full answer
Your Exam Success, Personally Taken Care Of
1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya
a
3a2 + b2 −c22
b
a2 +3 b2 −c22
c
a2 − b2 + 3c22
d
none of these
answer is A.
(Unlock A.I Detailed Solution for FREE)
Best Courses for You
JEE
NEET
Foundation JEE
Foundation NEET
CBSE
Detailed Solution
To find (a→−b→)⋅a→, i.e. |a→|2−a→⋅b→ ………..(1) Now a→+b→=c→⇒ |a→|2+|b→|2+2a→⋅b→=|c→|2⇒2a→⋅b→=|c→|2-|a→|2-|b→|2 a→⋅b→=|c→|2-|a→|2-|b→|22 Substitute the value of a→⋅b→ in eqn. (1)a2→-|c→|2-|a→|2-|b→|223a→2+b→2-c→22