Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

The identity 13+23+33+…+n3 is equal to

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

n(n−1)22

b

n(n+1)2

c

{n(n+1)}22

d

n(n+1)22

answer is D.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Let the given statement be P(n).P(n):13+23+33+…+n3=n(n+1)22Step I : For n=1,             P(1):1(1+1)22=1×222=12=1=13 which is trueStep ll: Let it is true for n = k,             13+23+33+…+k3=k(k+1)22------iStep lll: For n=k+1,             13+23+33+43+…+k3+(k+1)3           =k(k+1)22+(k+1)3      [using Eq. (i)]            =k2(k+1)24+(k+1)31=k2(k+1)2+4(k+1)34  On taking (k + 1)2 common in numerator Part,            =(k+1)2k2+4(k+1)4=(k+1)2k2+4k+44=(k+1)2(k+2)24=(k+1)2[(k+1)+1]24=(k+1){(k+1)+1}22Therefore, P(k + 1) is true when P(k) is true. Hence, from the principle of mathematical induction, the statement is true for all natural numbers n.
Watch 3-min video & get full concept clarity

courses

No courses found

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
The identity 13+23+33+…+n3 is equal to