Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

The identity 13+23+33+…+n3 is equal to

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

n(n−1)22

b

n(n+1)2

c

{n(n+1)}22

d

n(n+1)22

answer is D.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Let the given statement be P(n).P(n):13+23+33+…+n3=n(n+1)22Step I : For n=1,             P(1):1(1+1)22=1×222=12=1=13 which is trueStep ll: Let it is true for n = k,             13+23+33+…+k3=k(k+1)22------iStep lll: For n=k+1,             13+23+33+43+…+k3+(k+1)3           =k(k+1)22+(k+1)3      [using Eq. (i)]            =k2(k+1)24+(k+1)31=k2(k+1)2+4(k+1)34  On taking (k + 1)2 common in numerator Part,            =(k+1)2k2+4(k+1)4=(k+1)2k2+4k+44=(k+1)2(k+2)24=(k+1)2[(k+1)+1]24=(k+1){(k+1)+1}22Therefore, P(k + 1) is true when P(k) is true. Hence, from the principle of mathematical induction, the statement is true for all natural numbers n.
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
personalised 1:1 online tutoring