Story
NEET AITS
Story
Mock Tests
Story
Live Class
Story
JEE AITS

Questions  

The identity 13+23+33++n3 is equal to

Unlock the full solution & master the concept.

Get a detailed solution and exclusive access to our masterclass to ensure you never miss a concept
By Expert Faculty of Sri Chaitanya
a
n(n−1)22
b
n(n+1)2
c
{n(n+1)}22
d
n(n+1)22

Ready to Test Your Skills?

Check Your Performance Today with our Free Mock Tests used by Toppers!

detailed solution

Correct option is D

Let the given statement be P(n).P(n):13+23+33+…+n3=n(n+1)22Step I : For n=1,             P(1):1(1+1)22=1×222=12=1=13 which is trueStep ll: Let it is true for n = k,             13+23+33+…+k3=k(k+1)22------iStep lll: For n=k+1,             13+23+33+43+…+k3+(k+1)3           =k(k+1)22+(k+1)3      [using Eq. (i)]            =k2(k+1)24+(k+1)31=k2(k+1)2+4(k+1)34  On taking (k + 1)2 common in numerator Part,            =(k+1)2k2+4(k+1)4=(k+1)2k2+4k+44=(k+1)2(k+2)24=(k+1)2[(k+1)+1]24=(k+1){(k+1)+1}22Therefore, P(k + 1) is true when P(k) is true. Hence, from the principle of mathematical induction, the statement is true for all natural numbers n.
ctaimg

ctaimg

Similar Questions

The sum of series 13+232+333++n3n is

Want to Improve your productivity
talk to our academic experts now !!

counselling
india
+91

whats app icon