Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

If α and β are the real roots of the equation x2-(k-2)x+k2+3k+5=0(k∈R) Find the maximum and minimum values of α2+β2 .

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

18,50 9

b

18,25 9

c

27,50 9

d

None of these

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Given that the equation x2−k-2x+k2+3k+5=0 has real rootsit means its discriminant must be positive k+22−4k2+3k+5≥0−3k2−16k−16≥03k2+16k+16≤03k+4k+4≤0k∈−4,−43Consider α2+β2=α+β2-2αβ =k-22-2k2+3k+5 =-k2-10k-6   Differentiate both sides and equate to zero2k=-10 k=-5but this value is not in the range of k values hence the minimum or maximum values of      α    are at k=-4,-43Therefore, the extremum values are 18,509
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring