Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

If α and β are the roots of the equation x2+ax+b=0, and α4 and β4 are the roots of x2-px+q=0, the roots x2−4bx+2b2−p=0 are always

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

both non-real

b

both positive

c

both negative

d

positive and negative

answer is D.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

We have,     α+β=−a, αβ=b, α4+β4=p and α4β4=q.Now,      α4+β4=α2+β22−2α2β2⇒   α4+β4=(α+β)2−2αβ2−2(αβ)2⇒   α4+β4=a2−2b2−2b2         [∵α+β=−a,αβ=b]⇒   α4+β4=a22−4a2b+2b2⇒   p=a22−4ba2+2b2             ∵α4+β4=p      ⇒ a22−4ba2+2b2−p=0          …(i)      ⇒ a2 is a root of the equation x2−4bx+2b2−p=0Let D be the discriminant of x2−4bx+2b2−p=0. Then,    D=16b2−42b2−p=16b2+4a22−4ba2 [Using (i)]⇒D=4a22−4ba2+4b2=4a2−2b2≥0Hence, the roots of the given equation are real and are of opposite signs.
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon