Q.

Ifα and βare the roots of the quadratic equation, x2+xsin⁡θ−2sin⁡θ=0,θ∈0,π2,then α12+β12α−12+β−12(α−β)24 isequalto

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

212(sin⁡θ+8)12

b

26(sin⁡θ+8)12

c

212(sin⁡θ−4)12

d

212(sin⁡θ−8)6

answer is A.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Given quadratic equation is x2+xsin⁡θ−2sin⁡θ=0,θ∈0,π2and its roots are αand βSo, sum of roots =α+β=−sin⁡θproduct or roots  =αβ=−2sin⁡θ⇒ αβ=2(α+β)……(i)Now, the given express is α12+β12α−12+β−12(α−β)24=α12+β121α12+1β12(α−β)24=α12+β12β12+α12α12β12(α−β)24=αβ(α−β)212=αβ(α+β)2−4αβ12=2(α+β)(α+β)2−8(α+β)12 [ from Eq. (i)] =2(α+β)−812=2−sin⁡θ−812                 [∵α+β=−sin⁡θ]=212(sin⁡θ+8)12
Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
Ifα and βare the roots of the quadratic equation, x2+xsin⁡θ−2sin⁡θ=0,θ∈0,π2,then α12+β12α−12+β−12(α−β)24 isequalto