Q.

Ifα and βare the roots of the quadratic equation, x2+xsin⁡θ−2sin⁡θ=0,θ∈0,π2,then α12+β12α−12+β−12(α−β)24 isequalto

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

212(sin⁡θ+8)12

b

26(sin⁡θ+8)12

c

212(sin⁡θ−4)12

d

212(sin⁡θ−8)6

answer is A.

(Unlock A.I Detailed Solution for FREE)

Detailed Solution

Given quadratic equation is x2+xsin⁡θ−2sin⁡θ=0,θ∈0,π2and its roots are αand βSo, sum of roots =α+β=−sin⁡θproduct or roots  =αβ=−2sin⁡θ⇒ αβ=2(α+β)……(i)Now, the given express is α12+β12α−12+β−12(α−β)24=α12+β121α12+1β12(α−β)24=α12+β12β12+α12α12β12(α−β)24=αβ(α−β)212=αβ(α+β)2−4αβ12=2(α+β)(α+β)2−8(α+β)12 [ from Eq. (i)] =2(α+β)−812=2−sin⁡θ−812                 [∵α+β=−sin⁡θ]=212(sin⁡θ+8)12
Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon