Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Ifα and βare the roots of the quadratic equation, x2+xsin⁡θ−2sin⁡θ=0,θ∈0,π2,then α12+β12α−12+β−12(α−β)24 isequalto

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

212(sin⁡θ+8)12

b

26(sin⁡θ+8)12

c

212(sin⁡θ−4)12

d

212(sin⁡θ−8)6

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Given quadratic equation is x2+xsin⁡θ−2sin⁡θ=0,θ∈0,π2and its roots are αand βSo, sum of roots =α+β=−sin⁡θproduct or roots  =αβ=−2sin⁡θ⇒ αβ=2(α+β)……(i)Now, the given express is α12+β12α−12+β−12(α−β)24=α12+β121α12+1β12(α−β)24=α12+β12β12+α12α12β12(α−β)24=αβ(α−β)212=αβ(α+β)2−4αβ12=2(α+β)(α+β)2−8(α+β)12 [ from Eq. (i)] =2(α+β)−812=2−sin⁡θ−812                 [∵α+β=−sin⁡θ]=212(sin⁡θ+8)12
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring