if α and β are the rots of x2+x+1=0 then for y≠0 in R, y+1αβαy+Β1β1y+α=
see full answer
Your Exam Success, Personally Taken Care Of
1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya
a
yy2−1
b
yy2−3
c
y3−1
d
y3
answer is D.
(Unlock A.I Detailed Solution for FREE)
Best Courses for You
JEE
NEET
Foundation JEE
Foundation NEET
CBSE
Detailed Solution
Since α,β are roots of x2+x+1=0, we have α+β=-1 and αβ=1 Now y+1αβαy+β1β1y+α R1→R1+R2+R3 =y+1+α+Β111αy+Β1Β1y+α taking y+1+α+β common from R1 =yy2+(α+B)y+αB-1-αy+α2-B+1α-By-B2=yy2-y+1-1-αy-α2+B+α-By-B2∣=yy2-y-y(α+B)+(α+B)-α2+B2=yy2=y3