Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

If ax2 + bx + c = 0 has imaginary roots and a - b + c > 0, then the set of points (x, y) satisfying the equation ax2+ya+(b+1)x+c=ax2+bx+c+|x+y| consists of the region in the xy-plane which is

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

on or above the bisector of I and III quadrant

b

on or above the bisector of II and IV quadrant

c

on or below the bisector of I and III quadrant

d

on or below the bisector of II and IV quadrant

answer is B.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

ax2+ya+(b+1)x+c=ax2+bx+c+|x+y|⇒ ax2+bx+c+(x+y)=ax2+bx+c+|x+y|            (1)Now f(x)=ax2+bx+c=0 has imaginary roots and a−b+c>0 or f(−1)>0⇒ f(x)=ax2+bx+c>0 for all real values of x⇒ x+y≥0⇒ (x,y) lies on or above the bisector of II and IV quadrants
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring