Q.

If 111abca3b3c3=(a−b)(b−c)(c−a)(a+b+c), where a, b, c are all different, then the determinant 111(x−a)2(x−b)2(x−c)2(x−b)(x−c)(x−c)(x−a)(x−a)(x−b) vanishes when

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

a + b + c = 0

b

x=13(a+b+c)

c

x=12(a+b+c)

d

x = a + b + c

answer is B.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

We have111abca3b3c3=(a−b)(b−c)(c−a)(a+b+c)           (1)Also, 111abca3b3c3=abc1a1b1c111a2b2c2 (taking a, b, c common from R1, R2, R3)=bcacab111a2b2c2  (Multiplying R1 by abc)=111a2b2c2bcacabThen   D=111(x−a)2(x−b)2(x−c)2(x−b)(x−c)(x−c)(x−a)(x−a)(x−b)=(a−b)(b−c)(c−a)(3x−a−b−c)Now, given that a, b and c are all different. So, D = 0 whenx=13(a+b+c)
Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
If 111abca3b3c3=(a−b)(b−c)(c−a)(a+b+c), where a, b, c are all different, then the determinant 111(x−a)2(x−b)2(x−c)2(x−b)(x−c)(x−c)(x−a)(x−a)(x−b) vanishes when