Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

If coefficient of x3 and x4 in the expansion of 1+ax+bx2(1−2x)18 in powers of x are both zeros, then (a,b) is equal to

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

14,2513

b

14,2723

c

16,2723

d

16,2513

answer is C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

S=1+ax+bx2(1−2x)18=1+ax+bx21+18C1(−2x)+ 18C2(−2x)2+18C3(−2x)3+18C4(−2x)4+…Coefficient of x3 in the expansion of S is  18C3(−2)3+a 18C2(−2)2+18C1(−2)b=0Divide by  18C1(−2) to obtain5443−17a+b=0               (1)Similarly, coefficient of x4 is 18C4(−2)4+a 18C3(−2)3+18C2(−2)2b=0Divide by  18C2(−2)2 to obtain80−323a+b=0                 (2)Subtract (2) from (1) to obtain3043−193a=0⇒a=16From b=17×16−5443=2723
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring