Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

If the coefficients of mth,(m+1)th  and (m+2)th  terms in the expansion (1+x)n  are in A.P., then

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

n2+n(4m+1)+4m2+2=0

b

(n+2m)2=n+2

c

(n−2m)2=n+2

d

n2+4(4m+1)+nm2−2=0

answer is C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Given expansion (1+x)n is,  We have general term in the expansion (x+a)n (∴  Tr+1= nCr xn−r (a)r  be the expansion of (x+a)n)  mth  term:  T(m−1)+1= nCm−1 xn−m+1 (a)m−1   The coefficient ofmth  term is nCm−1 (m+1)th  term:  Tm+1= nCm xn−m (a)m   The coefficient of(m+1)th  term is nCm (m+2)th  term: T(m+1)+1= nCm+1 xn−m−1 (a)m+1   The coefficient of(m+2)th  term is nCm+1 The coefficients of mth,(m+1)th  and (m+2)th  terms in the expansion (1+x)n  are in A.P., then(if a,b and c are in A.P then b=a+c2⇒2b=a+c )2. nCm= nCm−1+ nCm+1  (∴nCr=n!(n−r)! r!) ⇒2n!m!(n−m)!=n!(m−1)!(n−m+1)!+n!(m+1)!(n−m−1)! ⇒2n!(m−1)!m(n−m−1)!(n−m)=n!(m−1)!(n−m+1)!(n−m)(n−m+1)+n!m(m+1)(m−1)!(n−m−1)! ⇒2n!m(n−m)=n!(n−m)(n−m+1)+n!m(m+1) ⇒2m(n−m)=m(m+1)+(n−m)(n−m+1)(n−m)(n−m+1)m(m+1) ⇒2(n−m+1)(m+1)=m(m+1)+(n−m)(n−m+1) ⇒2(mn−m2+m+n−m+1)=m2+m+n2−nm+n−mn+m2−m ⇒(n−2m)2=n+2
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring
If the coefficients of mth,(m+1)th  and (m+2)th  terms in the expansion (1+x)n  are in A.P., then