If a complex number z satisfies |z|2+4|z|2−2zz¯+z¯z−16=0, then the maximum value of Zis
see full answer
Your Exam Success, Personally Taken Care Of
1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya
a
6+1
b
2
c
6
d
2+6
answer is D.
(Unlock A.I Detailed Solution for FREE)
Best Courses for You
JEE
NEET
Foundation JEE
Foundation NEET
CBSE
Detailed Solution
Given that z2+4|z|2−2zz¯+z¯z−16=0…… (1) Put z=r(cosθ+isinθ)⇒z¯=r(cosθ−isinθ) And zz¯=cos2θ+isin2θ,z¯z=cos2θ−isin2θ|z¯|2=r2 Substitute all these in equation (1) ,we get r2+4r2−4cos2θ−16=0⇒r4+4−r2(4cos2θ+16)=0 Put r2=t⇒t2−t(4cos2θ+16)+4=0⇒t=4cos2θ+16±(4cos2θ+16)2−162⇒r2=2(cos2θ+4)±2(cos2θ+4)2−1∴ Maximum of r2=10+224 , when cos2θ=1=6+4+26×4=(6+4)2∴ Maximum of =2+6