If A=cosθ−sinθsinθcosθ, then the matrix A−50 when θ=π12, is equal to
see full answer
Your Exam Success, Personally Taken Care Of
1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya
a
1232−3212
b
32−121232
c
3212−1232
d
12−323212
answer is C.
(Unlock A.I Detailed Solution for FREE)
Best Courses for You
JEE
NEET
Foundation JEE
Foundation NEET
CBSE
Detailed Solution
We have __A=cosθ−sinθsinθcosθ∴ |A|=cos2θ+sin2θ=1 And adj A=cosθsinθ−sinθcosθ∵ If A=a bc d, then adj A=d−b−ca⇒ A−1=cosθsinθ−sinθcosθ ∵A−1=adj A|A| Note that, A−50=A−150 Now, A−2=A−1A−1⇒A−2=cosθsinθ−sinθcosθcosθsinθ−sinθcosθ=cos2θ−sin2θcosθsinθ+sinθcosθ−cosθsinθ−cosθsinθ−sin2θ+cos2θ=cos2θsin2θ−sin2θcos2θ Also, A−3=A−2A−1A−3=cos2θsin2θ−sin2θcos2θcosθsinθ−sinθcosθ=cos3θsin3θ−sin3θcos3θ Similarly, A−50=cos50θsin50θ−sin50θcos50θ=cos256πsin256π−sin256πcos256π when θ=π12=cosπ6sinπ6−sinπ6cosπ6∵cos25π6=cos4π+π6=cosπ6 and sin25π6=sin4π+π6=sinπ6=3212−1232