Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

If ∫dx(x+2)x2+1=aln⁡1+x2+btan−1⁡x+15ln⁡|x+2|+C then

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

a=−110,b=−25

b

a=110,b=−25

c

a=−110,b=25

d

a=110,b=25

answer is C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

∫dx(x+2)x2+1=aln⁡1+x2+btan−1⁡x+15ln⁡|x+2|+C.Differentiating both sides, we get1(x+2)x2+1=2ax1+x2+b1+x2+15(x+2)⇒1(x+2)x2+1=(x+2)(5b+10ax)+1+x251+x2(x+2)⇒ 5=1+x2+5(b+2ax)(x+2)Comparing the like powers of 'x'on both sides, we get  1+10a=0,b+4a=0,10b+1=5⇒ a=−110,b=25
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring